
Function reference
-
new_screference() - Generate single-cell reference (`screference`) object
-
new_hscreference() - Generate multi-level hierarchical single-cell reference (`hscreference`) object
-
compute_reference(<screference>)compute_reference(<hscreference>) - Compute reference given a deconvolution method from an `screference` object
-
autogenes_scref() - Compute reference matrix from an `screference` object using AutoGeneS
-
bayesprism_scref() - Compute reference matrix from an `screference` object using BayesPrism
-
card_scref() - Construct the mean gene expression basis matrix (B) from `screference` object using the method implemented in the CARD package
-
cell2location_scref() - Compute Reference Signature Matrix from `screference` Object Using Cell2location
-
cibersortx_scref() - Compute reference signature matrix from `screference` object using method implemented in CIBERSORTx
-
dwls_scref() - Compute reference signature matrix from `screference` object using method implemented in DWLS package for methods `dwls`, `svr` and `ols`
-
scaden_scref() - Compute reference matrix from an `screference` object using scaden (Single-cell assisted deconvolutional network)
-
spotlight_scref() - Select markers for SPOTlight using an `screference`
-
new_scbench() - Generate `scbench` object
-
mixtures_lod() - Simulate mixtures to find the limit of detection of each population in mixtures in an `scbench` object
-
mixtures_population() - Simulate sample population mixtures given bounds in an `scbench` object
-
mixtures_spatial() - Simulate spatially-aware mixtures in an `scbench` object
-
mixtures_spillover() - Simulate mixtures for measuring spillover between all pairs of populations in an `scbench` object
-
pseudobulks() - Generate pseudobulk gene expression from single-cell RNA-seq given population mixtures in an `scbench` object
-
deconvolute(<scbench>)deconvolute(<matrix>)deconvolute(<Seurat>) - Deconvolute `scbench` object using a chosen method
-
deconvolute_all(<scbench>)deconvolute_all(<matrix>)deconvolute_all(<Seurat>) - Deconvolute `scbench` object using all methods with default settings
-
autogenes_deconvolute() - AutoGeneS deconvolution of bulk data using an `screference`
-
bayesprism_deconvolute() - BayesPrism deconvolution of bulk data using an `screference`
-
bisque_deconvolute() - Bisque deconvolution of bulk data using an `screference`
-
card_deconvolute() - CARD deconvolution using an `screference`
-
cell2location_deconvolute() - Cell2location deconvolution of spatial transcriptomics data from an 'screference'
-
cibersortx_deconvolute() - CIBERSORTx deconvolution of bulk data using an `screference`
-
dwls_deconvolute() - Dampened weighted least squares (DWLS) deconvolution of bulk data using an `screference`
-
music_deconvolute() - MuSiC deconvolution of bulk data using an `screference`
-
ols_deconvolute() - Ordinary least squares (OLS) deconvolution of bulk data using an `screference`
-
rctd_deconvolute() - RCTD deconvolution using an `screference`
-
scaden_deconvolute() - scaden (Single-cell assisted deconvolutional network) deconvolution of bulk data using an `screference`
-
spacet_deconvolute() - SpaCET deconvolution using an `screference`
-
spotlight_deconvolute() - SPOTlight deconvolution of spatial data using an `screference`
-
svr_deconvolute() - Support vector regression (SVR) deconvolution of bulk data using an `screference`
-
results(<scbench>) - Get summary of benchmark results for an analysis type
-
results_tidy() - Get benchmark results from `scbench` object in a tidy format, without performance metrics
-
plt_colocalization() - Plot spatial correlation of cell type proportions
-
plt_comp_performance(<scbench>)plt_comp_performance(<hscreference>)plt_comp_performance(<screference>) - Plot computational metrics computed during deconvolution
-
plt_cor_heatmap() - Plot heatmap of correlation between deconvolution results for simulated populations and true mixtures used for the pseudobulks
-
plt_cors_scatter() - Plot correlations by population between deconvolution results for simulated populations and true mixtures used for the pseudobulk
-
plt_lod_heatmap() - Plot heatmap summarizing limit of detection by population and method
-
plt_lod_scatter() - Plot limit of detection of deconvolution for each population as the proportion of the pseudobulk where the method estimation is higher than at proportion=0 for each population
-
plt_method_concordance() - Plot percentage of concordance of major population between methods on spatial data
-
plt_method_correlation() - Plot correlation between methods on spatial data
-
plt_population_mixtures() - Plot sample population mixtures from an `scbench` object
-
plt_rmse_heatmap() - Plot RMSE between deconvolution results for simulated populations and true mixtures used for the pseudobulks
-
plt_spatial_correlation() - Plot spatial correlation of cell type proportions
-
plt_spatial_mixture() - Plot sample spatial mixture from an `scbench` object
-
plt_spillover_heatmap() - Plot heatmap summarizing spillover RMSE by population and method
-
plt_spillover_scatter() - Plot correlations between deconvolution results and spillover mixtures between each pair of populations
-
deconverse_results(<Seurat>)deconverse_results(<scbench>) - Returns feature names of `deconverse` results that are stored in the Seurat object
-
pp_PBMCs() - Get Seurat PBMCs example and pre-process
-
read_h5ad() - Read a h5ad file and convert it to a Seurat object
-
test_markers() - Evaluate annotation labels using Seurat markers
-
install_cibersortx() - Installs CIBERSORTx container using docker or singularity
-
adata_to_seurat() - Convert adata to a Seurat object
-
seurat_to_adata() - Convert Seurat to a adata