
Function reference
-
new_screference()
- Generate single-cell reference (`screference`) object
-
new_hscreference()
- Generate multi-level hierarchical single-cell reference (`hscreference`) object
-
compute_reference(<screference>)
compute_reference(<hscreference>)
- Compute reference given a deconvolution method from an `screference` object
-
autogenes_scref()
- Compute reference matrix from an `screference` object using AutoGeneS
-
bayesprism_scref()
- Compute reference matrix from an `screference` object using BayesPrism
-
card_scref()
- Construct the mean gene expression basis matrix (B) from `screference` object using the method implemented in the CARD package
-
cell2location_scref()
- Compute Reference Signature Matrix from `screference` Object Using Cell2location
-
cibersortx_scref()
- Compute reference signature matrix from `screference` object using method implemented in CIBERSORTx
-
dwls_scref()
- Compute reference signature matrix from `screference` object using method implemented in DWLS package for methods `dwls`, `svr` and `ols`
-
scaden_scref()
- Compute reference matrix from an `screference` object using scaden (Single-cell assisted deconvolutional network)
-
spotlight_scref()
- Select markers for SPOTlight using an `screference`
-
new_scbench()
- Generate `scbench` object
-
mixtures_lod()
- Simulate mixtures to find the limit of detection of each population in mixtures in an `scbench` object
-
mixtures_population()
- Simulate sample population mixtures given bounds in an `scbench` object
-
mixtures_spatial()
- Simulate spatially-aware mixtures in an `scbench` object
-
mixtures_spillover()
- Simulate mixtures for measuring spillover between all pairs of populations in an `scbench` object
-
pseudobulks()
- Generate pseudobulk gene expression from single-cell RNA-seq given population mixtures in an `scbench` object
-
deconvolute(<scbench>)
deconvolute(<matrix>)
deconvolute(<Seurat>)
- Deconvolute `scbench` object using a chosen method
-
deconvolute_all(<scbench>)
deconvolute_all(<matrix>)
deconvolute_all(<Seurat>)
- Deconvolute `scbench` object using all methods with default settings
-
autogenes_deconvolute()
- AutoGeneS deconvolution of bulk data using an `screference`
-
bayesprism_deconvolute()
- BayesPrism deconvolution of bulk data using an `screference`
-
bisque_deconvolute()
- Bisque deconvolution of bulk data using an `screference`
-
card_deconvolute()
- CARD deconvolution using an `screference`
-
cell2location_deconvolute()
- Cell2location deconvolution of spatial transcriptomics data from an 'screference'
-
cibersortx_deconvolute()
- CIBERSORTx deconvolution of bulk data using an `screference`
-
dwls_deconvolute()
- Dampened weighted least squares (DWLS) deconvolution of bulk data using an `screference`
-
music_deconvolute()
- MuSiC deconvolution of bulk data using an `screference`
-
ols_deconvolute()
- Ordinary least squares (OLS) deconvolution of bulk data using an `screference`
-
rctd_deconvolute()
- RCTD deconvolution using an `screference`
-
scaden_deconvolute()
- scaden (Single-cell assisted deconvolutional network) deconvolution of bulk data using an `screference`
-
spacet_deconvolute()
- SpaCET deconvolution using an `screference`
-
spotlight_deconvolute()
- SPOTlight deconvolution of spatial data using an `screference`
-
svr_deconvolute()
- Support vector regression (SVR) deconvolution of bulk data using an `screference`
-
results(<scbench>)
- Get summary of benchmark results for an analysis type
-
results_tidy()
- Get benchmark results from `scbench` object in a tidy format, without performance metrics
-
plt_colocalization()
- Plot spatial correlation of cell type proportions
-
plt_comp_performance(<scbench>)
plt_comp_performance(<hscreference>)
plt_comp_performance(<screference>)
- Plot computational metrics computed during deconvolution
-
plt_cor_heatmap()
- Plot heatmap of correlation between deconvolution results for simulated populations and true mixtures used for the pseudobulks
-
plt_cors_scatter()
- Plot correlations by population between deconvolution results for simulated populations and true mixtures used for the pseudobulk
-
plt_lod_heatmap()
- Plot heatmap summarizing limit of detection by population and method
-
plt_lod_scatter()
- Plot limit of detection of deconvolution for each population as the proportion of the pseudobulk where the method estimation is higher than at proportion=0 for each population
-
plt_method_concordance()
- Plot percentage of concordance of major population between methods on spatial data
-
plt_method_correlation()
- Plot correlation between methods on spatial data
-
plt_population_mixtures()
- Plot sample population mixtures from an `scbench` object
-
plt_rmse_heatmap()
- Plot RMSE between deconvolution results for simulated populations and true mixtures used for the pseudobulks
-
plt_spatial_correlation()
- Plot spatial correlation of cell type proportions
-
plt_spatial_mixture()
- Plot sample spatial mixture from an `scbench` object
-
plt_spillover_heatmap()
- Plot heatmap summarizing spillover RMSE by population and method
-
plt_spillover_scatter()
- Plot correlations between deconvolution results and spillover mixtures between each pair of populations
-
deconverse_results(<Seurat>)
deconverse_results(<scbench>)
- Returns feature names of `deconverse` results that are stored in the Seurat object
-
pp_PBMCs()
- Get Seurat PBMCs example and pre-process
-
read_h5ad()
- Read a h5ad file and convert it to a Seurat object
-
test_markers()
- Evaluate annotation labels using Seurat markers
-
install_cibersortx()
- Installs CIBERSORTx container using docker or singularity
-
adata_to_seurat()
- Convert adata to a Seurat object
-
seurat_to_adata()
- Convert Seurat to a adata